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Abstract—In this paper, a kernel uncorrelated adjacent-
class discriminant analysis (KUADA) approach is 
proposed for image recognition. The optimal nonlinear 
discriminant vector obtained by this approach can 
differentiate one class and its adjacent classes, i.e., its 
nearest neighbor classes, by constructing the specific 
between-class and within-class scatter matrices in kernel 
space using the Fisher criterion. In this manner, KUADA 
acquires all discriminant vectors class by class. 
Furthermore, KUADA makes every discriminant vector 
satisfy locally statistical uncorrelated constraints by using 
the corresponding class and part of its most adjacent 
classes. Experimental results on the public AR and CAS-
PEAL face databases demonstrate that the proposed 
approach outperforms several representative nonlinear 
discriminant methods. 
    Keywords-adjacent classes; locally statistical 
uncorrelated constraints; kernel uncorrelated adjacent-class 
discriminant analysis (KUADA) 
 

I. INTRODUCTION 
Discriminant analysis is an important research topic 

in the field of pattern recognition. In order to solve the 
nonlinear classification problems, many kernel 
discrimination algorithms have been presented, such as 
Kernel discriminant analysis (KDA) [1]. However, 
KDA can not extract the most discriminative features 
of a specific class because every achieved discriminant 
vector extracts discriminative information from the 
whole sample set. To solve this problem, P. 
Baggenstoss proposed a class-specific idea that each 
class has its own feature sets and designed the 
probabilistic classifiers [2]. Class-specific kernel 
discriminant analysis (CSKDA) [3] applies this idea to 
face verification. For each specific class, it acquires a 
set of discriminant vectors by minimizing the within-
class scatter, and maximizing the between-class scatter 
that is calculated using the mean of this specific class 
and the samples of all other classes. However, with 
respect to a specific class, we think that it is 
unnecessary to use all samples of the sample set to 
construct the between-class scatter matrix of this class. 

Some feature extraction methods considering the 
local structure of data have been proposed, such as 
locality preserving projections (LPP) [4] and kernel 
local Fisher discriminant analysis (KLFDA) [5]. LPP 
finds a linear map that preserves local neighborhood 
information of each sample. It is an unsupervised 
method, so it has no direct connection to classification. 

KLFDA takes local structure of the data into account 
so the multimodal data can be embedded appropriately.  

In this paper, we first propose a kernel adjacent-
class discriminant analysis (KADA) approach. Unlike 
LPP, KADA preserves local neighborhood information 
of each class, not each sample. The optimal 
discriminant vector obtained by KADA can 
differentiate one class and its adjacent classes by 
constructing the corresponding between-class and 
within-class scatter matrices in kernel space and using 
the Fisher criterion. In this manner, KADA acquires all 
optimal discriminant vectors class by class. Different 
from CSKDA, KADA calculates the between-class 
scatter matrix using a small number of samples that 
belong to the adjacent classes of a specific class. And 
different from KDA and KLFDA, KADA extracts 
discriminative features class by class.  

In many applications, it is desirable to eliminate the 
redundancy among discriminant vectors. Uncorrelated 
optimal discriminant vectors (UODV) can realize this 
aim since it makes each discriminant vector satisfy 
statistical uncorrelated constraints [6]. Kernel 
uncorrelated discriminant analysis (KUDA) [7] and 
GSVD-based KUDA [8] methods were proposed to 
realize UODV in the kernel space. Enlightened by 
UODV, we propose a kernel uncorrelated adjacent-
class discriminant analysis (KUADA) approach. 
KUADA makes every discriminant vector satisfy 
locally statistical uncorrelated constraints by using the 
corresponding class and part of its most adjacent 
classes, and gets an optimal discriminant transform in 
nonlinear space. 

 
II. KERNEL ADJACENT-CLASS DISCRIMINANT 

ANALYSIS (KADA) 
A. KDA 

Assume that the original sample set 
{ }1 2, , , NX x x x=  is composed of  c  classes, and 

there are in  training samples in the thi  class. For a 
given nonlinear mapping function ϕ , the original 
samples can be mapped into the kernel space F , 

( ): x xϕ ϕ→ .Suppose that bSϕ  and tSφ  are the between-
class scatter and total scatter matrices defined in F , 
KDA finds a projection transform α  to maximize the 
following function: 
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where tS KKϕ′ =  and WbS K Kϕ′ = , K  is an N N×  
kernel matrix, ( )1 2W w , w ,..., wcdiag= , w i

 is an i in n×  
matrix with all terms equal to 1/ in .  
 
B. KADA 

We realize KADA by the following four steps: 
1). Map to the kernel space and Get adjacent classes. 

Let : dR Fφ →  denotes a nonlinear mapping. The 
original sample set { }1 2, , , cX X X X=  is injected into 

the kernel space F  by : ( )i ix xφ φ→ , and we obtain a 
set of mapped samples { }1 2, , , cX X Xϕ ϕ ϕΨ = . Firstly, 

we compute the Euclidean distance between any two 
classes iX ϕ  and jX ϕ  in the kernel space as: 

( ),i j i jd X X m mϕ ϕ ϕ ϕ= −  ,                   (2) 

where  represents the 2-norm operator, imϕ  and jmϕ  

are the mean vectors of iX ϕ  and jX ϕ , respectively. We 

construct a distance matrix ( , ) ( , )i jG i j d X Xϕ ϕ= . 

Then, we sort G  in the ascending order. For the thi  
class, we can get its nearest neighbor classes with the 
smallest between-class distances. These classes are 
regarded as the adjacent classes of the thi  class. In this 
paper, we set the number of adjacent classes as the 
same value 1K  for every class. 

 
2). Construct the new scatter matrices in kernel space. 

For the thi  class, the between-class scatter matrix 
i
bS
φ

 and the total scatter matrix i
tS
φ

 are reconstructed 
as follows: 

( )( )T

b i i i i
i k kS m m m m
ϕ ϕ ϕϕ ϕ= − − ,           (3) 
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where ( )
1 11

1 1 qnc
k
i iq ql

q lq

m x
K n

ϕ
θ φ

= =

= ∑ ∑  , ( )1
2

k
i i im m m

ϕϕ ϕ= + , 

and the coefficient iqθ  is defined as 

1     
0    iq

if  class q is adjacent to class i
otherwise

θ ⎧= ⎨
⎩

. 

 
3). Calculate the discriminant vector of  class i. 

According to Eq. (1), for the thi  class, we calculate 
the discriminant vector iα  which maximizes the 
following function: 

( )
T i

i b i

i T i
i t i

S
J

S

ϕ

ϕ

α α
α

α α
= ,                          (5)                             

where i i i
tS K K

ϕ
= , Wi i i i

bS K K
ϕ

= , iK  is an i im m×  

kernel matrix calculated by using the thi  class and its 

adjacent classes, 
1

c

i i iq q
q

m n nθ
=

= +∑ , 1 2W (w , w )i i idiag= , 

W i  is an i im m×  matrix, and 1w i  is an i in n×  matrix 

with all terms equal to 1/ in  while 2w i  is an 

( ) ( )i i i im n m n− × −  matrix with all terms equal to ( )1/ i im n− . 

According to Eq. (3), the rank of i
bS
ϕ

 is 1. 

Therefore, iα  is the eigenvector of ( ) 1
i i
t bS S

ϕ ϕ−  

corresponding to the nonzero eigenvalue. 
4). Obtain all the discriminant vector class by class. 

We repeat Steps 1-3 and finally obtain c  
discriminant vectors class by class. Thus, the new 
training samples ( )1 2, ,...,

Tc
KADA KADA KADA KADAY Y Y Y=   can be 

described as 
ˆi T iT

KADA iY Kα= ,                          (6) 

where ˆ iK  is an iN m×  matrix calculated by using all 
the training samples and the adjacent classes’ samples 
of the thi  class. 
 

III. KERNEL UNCORRELATED ADA (KUADA) 
A. UODV 

UODV achieves a group of optimal discriminant 
vectors which can satisfy both the Fisher criterion and 
the following statistical uncorrelated constraints: 

0, 1 ( 1)T
i t jw S w j i= ≤ ≤ − ,                (7) 

where tS  is the total scatter matrix of sample set. 
According to the improved UODV algorithm [7], 

the first optimal discriminant vector 1w  is obtained by 
maximizing Eq. (1). Then, UODV gives the following 
theorem: 
Lemma 1. The thi  optimal discriminant vector iw  
( 2i ≥ ) is the eigenvector corresponding to the maximal 
eigenvalue of the equation: 

b i t iPS w S wλ=   ,                         (8) 
where 1( )T T

t tP I S D DS D D−= − , [ ]1 2 1, , , T
iD w w w −=  

and (1,1, ,1)I diag= . 
 

711711707707707



 

B. KUADA Approach 
We realize KUADA by following two steps:  

1). Construct locally statistical uncorrelated 
constraints. 

Assume that the first 1i −  eigenvectors 

1 2 1( , , , )iα α α −  of KUADA have been obtained,  iα  is 

the optimal discriminant vector of the thi  class. For the 
thi  class, KUADA selects 2K  obtained optimal 

discriminant vectors 
21 2( , , , )j j jKα α α  to satisfy 

locally statistical uncorrelated constraints:  

20, 1,2, ,T i
i t jmS m K

ϕ
α α = =  and T i

i t iS b
ϕ

α α = , (9) 

where jmα  corresponds to one of most adjacent classes 

of the thi  class, and b  is a constant. 
In the experiment, the value of 

2K  is set to be 
smaller than the value of 1K , i.e., 2 1K K< . We only 
use part of its adjacent classes of each class to 
construct locally uncorrelated constraints. Therefore, 
the constraints of KUADA are different from those of 
UODV, since iα  of KUADA does not need to be 
statistically uncorrelated with every obtained 

(1 1)j j iα ≤ ≤ − , and KUADA uses i
tS

ϕ  to replace tS  
defined in Eq. (8).  
2). Calculate optimal discriminant vectors. 

The first discriminant vector 
1α  of KUADA is same 

as that of KADA. Then, KUADA calculates 
discriminant vectors using the following theorem:  
Theorem 1. The thi  optimal discriminant vector iα  
( 2i ≥ ) is the eigenvector corresponding to the nonzero 
eigenvalue of 1( )i i

t i bS PS
ϕ ϕ−  ,  where  

1( )i T i T
i t i i t i iP I S D D S D D

ϕ ϕ −= − , 
21 2, , ,

T

i KD α α α⎡ ⎤= ⎣ ⎦ , 

and ( )1,1, ,1I diag= .                                         (10) 
Proof. Use the Lagrange multipliers method to express 
Eq. (5) including all the locally statistical uncorrelated 
constraints in Eq. (9), we have: 

2

1

( ) ( )
K

T i T i T i
i i b i i t i m i t jm

m

L S S b S
ϕ ϕ ϕ

α α α λ α α μ α α
=

= − − −∑ , (11) 

where λ  and 2( 1,..., )m m Kμ =  are Lagrange multipliers. 
The optimization is performed by setting the partial 

derivative of ( )iL ϕ  to be equal to zero: 

( ) ( )( ) 0i iL α α∂ ∂ = .                      (12) 
So we have: 

 
2

1
2 2 0

K
i i i
b i t i m t jm

m
S S S

ϕ ϕ ϕ
α λ α μ α

=
− − =∑ .          (13) 

Left multiplying Eq. (13) by 2( 1,2, , )T
js s Kα = , we 

obtain 
2K  equations: 

2

2
1

2 0, 1, 2, ,
K

T i T i
js b i m js t jm

m

S S s K
ϕ ϕ

α α μ α α
=

− = =∑ . (14) 

Let 
21 2[ , , , ]T

i KU μ μ μ= ,
21 2, , ,

T

i KD α α α⎡ ⎤= ⎣ ⎦
. The 

above equations can be represented in the form of 
matrix: 

     2i T i
i t i i i b iD S D U D S

ϕ ϕ
α= .                (15) 

Thus, we obtain: 
12( )i T i

i i t i i b iU D S D D S
ϕ ϕ

α−= ,             (16) 
Eq. (16) can be written as: 

2 2 0i i i T
b i t i t i iS S S D U

ϕ ϕ ϕ
α λ α− − =  .        (17) 

Substituting (16) into (17), we have: 
12 2 [2( ) ] 0i i i T i T i

b i t i t i i t i i b iS S S D DS D D S
ϕ ϕ ϕ ϕ ϕ
α λ α α−− − = . (18) 

Hence, we obtain i i
i b i t iPS S

ϕ ϕ
α λ α= , where iα  is the 

eigenvector corresponding to the nonzero eigenvalue 
of 1( )i i

t i bS PS
ϕ ϕ− , where iP  is defined in Eq. (10).  Proof 

is over. 
Theorem 1 and Lemma 1 show that the realization 

of KUADA and UODV are different: (i) KUADA 
constructs specific total scatter matrix i

tS
ϕ  and 

between-class scatter matrix i
bS

ϕ  for every class, while 
UODV uses identical total scatter matrix tS  and 
between-class scatter matrix bS  for all classes; (ii) The 
matrix 

iP  constructed by KUADA is different from the 
matrix P  constructed by UODV. 
 

IV. EXPERIMENTAL RESULTS 
In the experiment, we use the AR and CAS-PEAL 

face databases. The AR database contains 119 
individuals, each 26 images with size 60 60×  [3]. All 
image samples of one subject are shown in Figure 1. 
We in turn choose following 1-8 representative images 
of every subject as the training samples: (1), (14), (2), 
(5), (8), (11), (17) and (19). The remainders are chosen 
as the testing samples. The CAS-PEAL database [9] 
we employed contains 1060 images of 106 individuals 
(10  
images each person) with varying lighting. A frontal 
image of each subject was captured under variable 
illumination. In the experiment, each image was 
automatically cropped and scaled to 60 48× . Figure 2 
shows 10 images of an individual of the CAS-PEAL 
face database. We use the first 2-6 images of each 
person as training samples. The remainder are regarded 
as testing samples. 
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Figure 1. Demo images of one subject from AR database 

 

 
Figure 2. Demo images of one subject from CAS-PEAL database 

 
In the experiment, 

1K  is set as 45 for the AR 
database and 35 for the CAS-PEAL database, 
respectively. 

2K  is determined by the following 
strategy: set 

2K  as the number of most adjacent classes 
of each class, where the optimal discriminant vectors 
of these classes have been acquired; if the number is 
more than 5, then set 2 5K = . 
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Figure 3. Recognition rates of all compared methods  

 
Table 1. Comparison of Average Recognition Rates 

Methods Average recognition rates (%) 
AR CAS-PEAL 

KUADA 80.84 89.37 
KADA 79.77 88.33 
KDA 78.43 86.84 

KUDA 78.75 87.17 
CSKDA 79.30 87.30 
KLFDA 78.91 87.40 

LPP 75.07 78.49 
 
Figure 3 shows the recognition rates of KUADA, 

KADA and five related methods including KDA, 
KUDA, CSKDA, KLFDA and LPP on the AR and 

CAS-PEAL databases, respectively. KUADA and 
KADA perform better than the compared methods in 
all cases. Table 1 shows that KUADA improves the 
average recognition rate at least by 1.54% (=80.84%-
79.30%) in contrast with other methods. Furthermore, 
KUADA outperforms KADA. 
 

V. CONCLUSION 
In this paper, we propose a KUADA approach for 

nonlinear facial feature extraction and recognition. 
Experimental results on AR and CAS-PEAL face 
databases demonstrate that KUADA outperforms 
several representative kernel discriminant methods. 
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