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ABSTRACT 
The key of color face recognition technique is how to effec-
tively utilize the complementary information between color 
components and remove their redundancy. Present color face 
recognition methods generally reduce the correlations be-
tween color components in the image pixel level, and then 
extract the discriminant features from the uncorrelated color 
face images. In this paper, we propose a novel color face 
recognition approach based on the holistic orthogonal analy-
sis (HOA) of discriminant transforms of color images. HOA 
can reduce the correlation of color information in the feature 
level. It in turn achieves the discriminant transforms of red, 
green and blue color images by using the Fisher criterion, 
and simultaneously makes the achieved transforms mutually 
orthogonal. Experimental results on the AR and FRGC-2 
public color face image databases demonstrate that the pro-
posed approach acquires better recognition performance than 
several representative color face recognition methods. 

Index Terms— Color face recognition, Discriminant trans-
forms, Holistic orthogonal analysis, Feature extraction. 

1. INTRODUCTION 

Color images are increasingly used in the fields of face rec-
ognition [1]. The key of color face recognition technique is 
how to effectively utilize the complementary information 
between color images and remove their redundancy. Yang 
and Liu [2] presented an extended general color image dis-
criminant (Extended GCID) algorithm that produces three 
groups of weights to fuse color images and then extracts 
discriminant features from the fused images. Liu [3] pre-
sented the uncorrelated color space (UCS), the independent 
color space (ICS), and the discriminating color space (DCS)  
methods for face recognition. UCS applies the principal 
component analysis (PCA) to reduce the correlations be-
tween color components. ICS assumes that each color image 
is defined by three independent source images that can be 
derived by a blind source separation procedure, such as the 
independent component analysis (ICA). And DCS applies 
the discriminant analysis [4] to define three new component 
images that are effective for pattern recognition. Shih and 
Liu transformed the RGB color space to the YQCr color 

configuration and extracted discriminant features for classi-
fication [5]. Yang et al. transformed RGB space to the HSV 
color space, and then employed the Hue and Saturation 
components to do complex PCA transform [6].   
      Present color recognition methods generally reduce the 
correlations of color components or transform RGB space to 
other spaces in the image pixel level, and then extract dis-
criminant features. In this paper, we propose a novel color 
face recognition approach which reduces the correlation of 
color information in the feature level. It is based on the ho-
listic orthogonal analysis (HOA) of discriminant transforms 
of color images. It in turn acquires the discriminant trans-
forms of red, green and blue color images by using the 
Fisher criterion, and simultaneously makes the achieved 
transforms mutually orthogonal. Experiments on the AR [7] 
and FRGC-2 [8] public color face databases validate the 
effectiveness of the proposed approach.  

2. HOLISTIC ORTHOGONAL ANALYSIS OF 
DISCRIMINANT TRANSFORMS (HOA) 

We first use HOA to acquire three discriminant transforms 
of red, green and blue components, respectively. Then we 
describe the realization algorithm of HOA and related theo-
retical property.  

2.1. Discriminant transform of red component 
Based on the Fisher criterion, we calculate the discriminant 
transform of red component RW  by 

max ( )
T

R bR R

R T
R wR R

W S W
J W

W S W
,                              (1) 

where  expresses the determinant of a square matrix, bRS

is the between-class scatter matrix of red component, and 
wRS  is the within-class scatter matrix of red component.  

Therefore we can achieve RW  by solving the following 
eigenequation:  

R R RP W W , 1-
R wR bRP S S .                       (2) 

Hence RW  is a matrix that consists of Rd  eigenvectors 
corresponding to Rd  different nonzero eigenvalues of RP .
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2.2. Discriminant transform of green component 
For eliminating the correlation of discriminant transforms of 
red and green components, we consider 0T

G RW W , where 

GW  is the discriminant transform of green component, being 
a constraint on the Fisher criterion:  

max ( )

. . 0

T
G bG G

G T
G wG G

T
G R

W S W
J W

W S W

s t W W

,                        (3) 

where bGS  is the between-class scatter matrix of green com-
ponent, and wGS  is the within-class scatter matrix of green 
component. 

Firstly, we put forward a generalized theorem to solve 
the following objective function:  
Theorem 1:

2 2
2

2 2

2 1

max ( )

. . 0

T
b

T
w

T

W S W
J W

W S W

s t W W

,                          (4) 

where 1W , bS  and wS  are all known matrices. 2W  is 
achieved by solving the following eigenequation: 

2 2PW W , 1 1 1 1
1 1 1 1( )T T

w w w bP S I W W S W W S S ,   (5) 

where I  is a unit matrix. Thus 2W  is a matrix that consists 
of d  eigenvectors corresponding to d different nonzero 
eigenvalues of P .

The proof is given in Appendix A.  

Secondly, Formula (4) can be changed into Formula (3) 
via separately replacing 1W , 2W , bS  and wS  by RW , GW ,

bGS  and wGS . Thus we obtain Theorem 2 to solve GW :
Theorem 2:

GW  is achieved by solving the following eigenequation:  

G G GP W W , 1 1 1 1( )T T
G wG R R wG R R wG bGP S I W W S W W S S , (6) 

where I  is a unit matrix. GW  consists of Gd eigenvectors 
corresponding to Gd  different nonzero eigenvalues of GP .

The proof is similar to that of Theorem 1.  

2.3. Discriminant transform of blue component 
For eliminating the correlation of between blue discriminant 
transform and foregoing two discriminant transforms, we 
construct the following objective function and constraints: 

max ( )

. . 0, 0

T
B bB B

B T
B wB B

T T
B R B G

W S W
J W

W S W

s t W W W W

,                        (7) 

where BW  is the discriminant transform of blue component, 

bBS  is the between-class scatter matrix of blue component, 
and wBS  is the within-class scatter matrix of blue compo-
nent. 

Formula (4) can be transformed into Formula (7) via 
separately replacing 1W , 2W , bS  and wS  by 

,R GW W W , BW , bBS  and wBS . Thus we obtain Theo-
rem 3:  
Theorem 3:

BW  is achieved by solving the following eigenequation:  

B B BP W W , 1 1 1 1( )T T
B wB wB wB bBP S I W W S W W S S ,  (8) 

where ,R GW W W , I  is a unit matrix. BW  consists of 

Bd  eigenvectors corresponding to Bd  different nonzero 
eigenvalues of BP .

The proof is similar to that of Theorem 1. 

2.4. Algorithm description 
We describe the realization algorithm of HOA as follows:  

Step 1: Calculate RW  by using Formula (2) on the training 
sample set. 

Step 2: Calculate GW  by using Formula (6) on the training 
sample set. 

Step 3: Calculate BW  by using Formula (8) on the training 
sample set. 

Step 4: Separately orthonormalize RW , GW  and BW .
Step 5: Apply RW , GW  and BW  to the red, green and blue 

components of all samples, respectively. For each 
sample, combine three extracted discriminant fea-
ture vectors into one vector.  

Step 6: Use the nearest neighbor classifier with the cosine 
distance to do classification.  

2.5. Theoretical property 
Step 4 in the above algorithm description can make the dis-
criminant vectors within the achieved discriminant trans-
form are orthogonal. This is helpful to further reduce the 
correlation of discriminant features. However, can this or-
thogonalization operation guarantee GW and BW still satis-
fying Formulas (6) and (8)? Theorem 4 proves that or-
thogonalizing GW and BW  does not influence the satisfac-
tion of the Fisher criterion and holistic orthogonal con-
straints between discriminant transforms. For the simplicity, 
the proof of Theorem 4 takes the form of Theorem 1.  
Theorem 4:

Suppose that 1W  and 2W  in Theorem 1 are orthogonal-
ized to 1 'W  and 2 'W , respectively. We have 

2 2( ') ( )J W J W  and 2 1' ' 0TW W .
The proof is given in Appendix B. 
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3. EXPERIMENTS 

We complete the experiment on the AR public color face 
image database at first. This database contains 102 indi-
viduals, each 26 images. We crop every image to the size of 
60×60. All cropped images of one subject are shown in Fig-
ure 1. The major differences between them are the expres-
sion, illumination, position, pose and sampling time. In or-
der to effectively evaluate the impact of different variations 
to the recognition results, we in turn choose the following 2-
8 representative images of every subject as training samples: 
(1), (2), (5), (8), (11), (14), (17) and (19), and use the re-
mainder as testing samples. 

(1)        (2)       (3)       (4)        (5)       (6)       (7)        (8)       (9) 

(10)     (11)      (12)     (13)     (14)      (15)     (16)     (17)      (18) 

 (19)      (20)     (21)      (22)     (23)      (24)      (25)     (26)
Figure 1: Demo images of one individual on AR database. 

We also complete the experiment on the FRGC-2 pub-
lic color face image database. This database used in the ex-
periment contains 100 individuals, each 24 images. And we 
crop every sample image to the size of 60×60. Figure 2 
shows all samples of one subject. We in turn choose the 
front 2-8 images of each person as training samples and use 
the remainder as testing samples. 

Figure 2: Demo images of one individual on FRGC-2 database.

We compare our approach with the color Fisherface 
(CFF) method, UCS [4], ICS [4], DCS [4], and Extended 
GCID [3]. CFF is an extension of the grayscale Fisherface, 
which combines the red, green and blue component vectors 
of each sample into a vector, and then apply the Fisherface 
method [7] to the vector. For all compared methods, we use 
the nearest neighbor classifier to do classification. In the 
proposed approach, we employ PCA first to avoid the sin-
gular within-class scatter matrix. 

Figures 3 and 4 separately show the recognition rates of 
the proposed HOA approach and five compared methods on 
the AR and FRGC-2 databases, where the number of train-
ing samples per person is ranged from 2 to 8. Table 1 shows 
the average recognition rates of all compared methods on 
the two databases.  
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Figure 3: Recognition rates of compared methods on AR. 
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Figure 4: Recognition rates of compared methods on FRGC-2. 

Table 1: Average recognition rates of all compared methods 
on AR and FRGC-2 databases.

Average recognition rates (%) Methods AR FRGC-2 
CFF 77.51 63.24 
UCS 77.15 63.71 
ICS 75.36 62.38 
DCS 77.76 61.89 

Extended GCID 80.11 65.55 
HOA 81.04 67.06 

Compared with CFF, UCS, ICS, DCS and Extended 
GCID, HOA separately improves the average recognition 
rates on both databases at least by 3.53%(=81.04%-77.51%), 
3.35%(=67.06%-63.71%),4.68%(=67.06%-62.38%), 3.28% 
(=81.04%-77.76%), 0.93%(=81.04%-80.11%).  

4. CONCLUSION 

In this paper, we propose a novel color face recognition 
approach based on the holistic orthogonal analysis (HOA) 
of discriminant transforms. In the feature level, HOA makes 
full use of supplementary information of discriminant trans-
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forms obtained from the color images, and reduces the cor-
relation between the transforms. Experimental results on the 
AR and FRGC-2 public color face image databases demon-
strate that the proposed approach achieves better recognition 
performance than several representative color face recogni-
tion methods.  
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6. APPENDIX A 

First, we construct the Lagrange function:  

2 2 2 2 2 1 2 1 2( ) T T T
b wL W W S W W S W C W W C , (A-1) 

where  and  are the Lagrange multipliers, and 1C  and 

2C  are two constant matrices.  
We set the derivative of 2( )L W  in Eq. (A-1) on 2W  to 

be zero:  
2

2 2 1
2

( ) 2 2 0b w

L W
S W S W W

W
.          (A-2) 

Multiplying Eq. (A-2) by 1
1
T

wW S , we have 
1 1

1 2 1 12 0T T
w b wW S S W W S W .                    (A-3) 

Thus  may be expressed as 
1 1 1

1 1 1 22( )T T
w w bW S W W S S W .                    (A-4) 

Due to Eqs. (A-2) and (A-4), we have 
1 1 1

2 2 1 1 1 1 2( ) 0T T
b w w w bS W S W W W S W W S S W ,   (A-5) 

that is,  
1 1 1 1

1 1 1 1 2 2( )T T
w w w bS I W W S W W S S W W ,      (A-6) 

where I is a unit matrix.  
Eq. (A-6) is equivalent to Formula (5). Proof is over. 

7. APPENDIX B 

(I) We prove 2 2( ') ( )J W J W :
Suppose that 2W  consists of d  eigenvectors corre-

sponding to d  different nonzero eigenvalues of P  in For-
mula (5), i.e., 2 21 22 2[ , , , ]dW w w w . We orthogonalize  

2W  as 

2 2' TW W A ,                          (A-7) 
where  

' ' '
2 21 22 2' [ , , , ]dW w w w ,                (A-8) 

A  is an orthogonalized transformation matrix whose di-
mension is d d . Since d  eigenvectors of 2W  are linearly 
uncorrelated, the rank of A  is d . In other words, A  is a 
full-rank matrix.  

There are several methods to realize the orthogoliza-
tion. In the experiment, we employ the conventional 
Schmidt orthogonalization. So we have  

2 2 2 2
2

2 2 2 2

2 2 2 2
2

2 2 2 2

' '
( ')

' '

( )

T T T
b b

T T T
w w

T T T
b b

T T T
w w

W S W AW S W A
J W

W S W AW S W A

A W S W A W S W
J W

A W S W A W S W

.   (A-9) 

(II) We prove 2 1' ' 0TW W :
Similar to 2 'W , we orthogonalize 1W  as 

1 1' TW W B ,                                    (A-10) 
where B  is an orthogonalized transformation matrix whose 
dimension is d d . We have  

2 1 2 1 2 1' ' 0T T T T TW W AW W B A W W B .          (A-11) 
Proof is over. 
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