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Facial Image Recognition Based on a Statistical Uncorrelated Near
Class Discriminant Approach
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SUMMARY In this letter, a statistical uncorrelated near class discrimi-
nant (SUNCD) approach is proposed for face recognition. The optimal dis-
criminant vector obtained by this approach can differentiate one class and
its near classes, i.e., its nearest neighbor classes, by constructing the spe-
cific between-class and within-class scatter matrices and using the Fisher
criterion. In this manner, SUNCD acquires all discriminant vectors class
by class. Furthermore, SUNCD makes every discriminant vector satisfy
locally statistical uncorrelated constraints by using the corresponding class
and part of its most neighboring classes. Experiments on the public AR
face database demonstrate that the proposed approach outperforms several
representative discriminant methods.
key words: near classes, locally statistical uncorrelated constraints, sta-
tistical uncorrelated near class discriminant (SUNCD), face recognition

1. Introduction

Feature extraction is an important research topic in the field
of pattern recognition. Linear discriminant analysis (LDA)
is a widely-used feature extraction method which obtains
discriminant vectors by using the Fisher criterion [1]. How-
ever, LDA can not extract the most discriminative features of
a specific class because every discriminant vector achieved
by LDA extracts discriminative information from the whole
sample set. To solve this problem, P. Baggenstoss proposed
a class-specific idea that each class has its own feature sets
and designed the probabilistic classifiers [2]. Class-specific
linear discriminant analysis (CSLDA) [3] and class-specific
kernel discriminant analysis (CSKDA) [4] apply this idea to
discriminant feature extraction. For each specific class, they
acquire a group of discriminant vectors by minimizing the
within-class scatter and maximizing the between-class scat-
ter that is calculated using the mean of this specific class
and the samples of all other classes. Then, CSLDA puts the
discriminant vectors of all classes together and constructs
a discriminant transform for classification, while CSKDA
separately uses the discriminant vectors of each class for
face verification. However, with respect to a specific class,
we think that it is unnecessary to use all samples of the sam-
ple set to construct the between-class scatter matrix of this
class.

Some feature extraction methods considering the local
structure of data have been proposed, such as locality pre-
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serving projections (LPP) [5] and local Fisher discriminant
analysis (LFDA) [6]. LPP finds a linear map that preserves
local neighborhood information of each sample, and its cri-
terion is to minimize the local scatter of mapped samples.
LPP is an unsupervised method, so it has no direct connec-
tion to classification. LFDA uses local neighborhood in-
formation to construct weighted between-class and within-
class scatter matrices and then performs discriminant analy-
sis.

In this letter, we first propose a near class discriminant
(NCD) approach. Unlike LPP, NCD preserves local neigh-
borhood information of each class, not each sample. The
optimal discriminant vector obtained by NCD can differen-
tiate one class and its near classes, i.e., its nearest neighbor
classes, by constructing the corresponding between-class
and within-class scatter matrices and using the Fisher crite-
rion. In this manner, NCD acquires all optimal discriminant
vectors class by class. Different from class-specific discrim-
inant methods (CSLDA and CSKDA), NCD calculates the
between-class scatter matrix using a small number of sam-
ples that belong to the near classes of a specific class. And
different from LDA, LPP and LFDA, NCD extracts discrim-
inative features class by class.

In many applications, it is desirable to eliminate the
redundancy among discriminant vectors. Uncorrelated op-
timal discriminant vectors (UODV) method can realize this
aim since it makes each discriminant vector satisfy statisti-
cal uncorrelated constraints [7]. Enlightened by UODV, we
further propose an statistical uncorrelated NCD (SUNCD)
approach. SUNCD makes every discriminant vector satisfy
locally statistical uncorrelated constraints by using the cor-
responding class and part of its most neighboring classes,
and gets an optimal discriminant transform.

The rest of this paper is organized as follows: In
Sect. 2, we outline LDA and describe NCD. In Sect. 3,
we outline UODV and describe the SUNCD approach. In
Sect. 4, experiments on the public AR face database are per-
formed. Finally, we offer the conclusions in Sect. 5.

2. Near Class Discriminant (NCD) Approach

2.1 LDA

Assume that X is a sample set having N training samples and
c classes {X1, X2, · · · , Xc}. In LDA, the between-class scatter
matrix S B, the within-class scatter matrix S W and the total-
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scatter matrix S T are defined as:

S B =

c∑
i=1

(mi − m̄) (mi − m̄)T , (1)

S W =
1
N

c∑
i=1

ni∑
j=1

(
xi j − mi

) (
xi j − mi

)T
, (2)

S T =
1
N

c∑
i=1

ni∑
j=1

(
xi j − m̄

) (
xi j − m̄

)T
. (3)

where ni is the number of samples of the ith class, xi j is a
sample of X, mi is the mean of the ith class and m̄ is the
mean of all training samples.

LDA uses the Fisher criterion to find a discriminant
transform W and maximizes the following function:

J (W) =

∣∣∣WT S BW
∣∣∣∣∣∣WT S WW
∣∣∣ . (4)

In this paper, we use an equivalent form of Eq. (4) [1]:

J (W) =

∣∣∣WT S BW
∣∣∣∣∣∣WT S T W
∣∣∣ . (5)

Generally, W is composed of the eigenvectors of S −1
T S B

corresponding to the non-zero eigenvalues.

2.2 NCD

We realize NCD by following four steps:
Step1. Get near classes.

We first compute the Euclidean distance between any
two classes Xi and Xj as:

d
(
Xi, Xj

)
=

∥∥∥ mi − mj

∥∥∥ , (6)

where ‖‖ represents the 2-norm operator, mi and mj are the
mean vectors of Xi and Xj, respectively. We construct a dis-
tance matrix G, where G (i, j) = d

(
Xi, Xj

)
.

Then, we sort G in the ascending order. For the ith

class, we can get its nearest neighbor classes with the small-
est between-class distances d

(
Xi, Xj

)
. These classes are re-

garded as the near classes of the ith class. In this paper, we
set the number of near classes as the same value K1 for every
class.
Step2. Construct the scatter matrices.

For the ith class, the between-class scatter matrix S i
b

and the total scatter matrix S i
t are constructed as follows:

S i
b =

(
mi − mk

i

) (
mi − mk

i

)T
, (7)

S i
t =

1

ni+
c∑

q=1
wiqnq

(
ni∑
j=1

(
xi j − m̄i

) (
xi j − m̄i

)T

+
c∑

q=1

nq∑
l=1

wiq

(
xql − m̄i

) (
xql − m̄i

)T
) , (8)

where mi is the mean of the ith class, mk
i =

1
K1

c∑
q=1

1
nq

nq∑
l=1

wiqxql, m̄i =
1

K1+1

(
mi + K1mk

i

)
, and the coeffi-

cient wiq is defined as:

wiq =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1 i f class q is neighboring to class i

0 otherwise

Step3. Calculate the discriminant vector of class i.
For the ith class, we calculate the discriminant vector φi

which maximizes the following function:

J (φi) =

∣∣∣φT
i S i

bφi

∣∣∣∣∣∣φT
i S i

tφi

∣∣∣ . (9)

According to Eq. (7), the rank of S i
b is 1. Therefore, φi

is the eigenvector of (S i
t)
−1S i

b corresponding to the nonzero
eigenvalue.

Step4. Obtain all discriminant vectors class by class.
We repeat Steps 1-3 and obtain c discriminant vectors

class by class. The discriminant transform W of NCD is
composed of these vectors, that is, W =

[
φ1, φ2, · · · , φc

]
.

3. Statistical Uncorrelated NCD (SUNCD) Approach

3.1 UODV

UODV (uncorrelated optimal discriminant vectors) achieves
a group of optimal discriminant vectors which satisfy both
the Fisher criterion and the following statistical uncorrelated
constraints:

φT
i S Tφ j = 0, 1 ≤ j ≤ ( i − 1), (10)

where S T defined in Eq. (3) is the total scatter matrix of sam-
ple set.

According to improved UODV algorithm [7], the first
optimal discriminant vector φi is obtained by maximizing
Eq. (5). Then, UODV gives the following theorem:

Lemma 1: The ith optimal discriminant vector φi(i ≥ 2) is
the eigenvector corresponding to the maximal eigenvalue of
the equation:

PS Bφi = λS Tφi, (11)

where P = I − S T DT (DS T DT )−1D, D =
[
φ1, φ2, · · · , φi−1

]T

and I = diag (1, 1, · · · , 1).

3.2 SUNCD Approach

We realize the statistical uncorrelated NCD (SUNCD) ap-
proach by following two steps:
Step1. Construct locally statistical uncorrelated constraints.

Assume that the first i − 1 optimal discriminant vec-
tors (φ1, φ2, · · · , φi−1) of SUNCD have been obtained, and
φi is the optimal discriminant vector of the ith class. For
the ith class, SUNCD selects K2 obtained optimal discrim-
inant vectors (φ j1, φ j2, · · · , φ jK2) to satisfy locally statistical
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uncorrelated constraints:

φT
i S i

tφ jm = 0, m = 1, 2, · · · ,K2, (12)

and φT
i S i

tφi = a, (13)

where φ jm corresponds to one of most neighboring classes
of the ith class, and a is a constant. In the experiment, the
value of K2 is set to be smaller than the value of K1, i.e.,
K2 < K1. We only use part of its near classes of each class to
construct locally statistical uncorrelated constraints. There-
fore, the constraints of SUNCD are different from those of
UODV, since φi of SUNCD does not need to be statistically
uncorrelated with every obtained φ j(1 ≤ j ≤ i − 1), and
SUNCD uses S i

t defined in Eq. (8) to replace S T defined in
Eq. (3).
Step2. Calculate optimal discriminant vectors.

The first discriminant vector φ1 of SUNCD is same as
that of NCD. φ1 is the eigenvector of (S 1

t )−1S 1
b correspond-

ing to the nonzero eigenvalue. Then, SUNCD calculates op-
timal discriminant vectors using the following theorem:

Theorem 1: The ith optimal discriminant vector φi(i ≥ 2)
is the eigenvector corresponding to the nonzero eigenvalue
of (S i

t)
−1PiS i

b, where

P = I − S i
tD

T
i (DiS

i
tD

T
i )−1Di,Di =

[
φ1, φ2, · · · , φK2

]T

and I = diag (1, 1, · · · , 1) . (14)

Proof. Using the Lagrange multipliers and locally statis-
tical uncorrelated constraints in Eqs. (12–13) to transform
Eq. (9), we have:

L(φi) = φT
i S i

bφi − λ(φT
i S i

tφi − a)

− K2∑
m=1
μmφ

T
i S i

tφ jm
, (15)

where λ and μm(m = 1, . . . ,K2) are Lagrange multipliers.
The optimization is performed by setting the partial

derivative of L(φi) to be equal to zero:

∂ (L(φi))
∂ (φi)

= 0. (16)

So we have:

2S i
bφi − 2λS i

tφi −
K2∑

m=1

μmS i
tφ jm = 0. (17)

Multiplying Eq. (16) by φT
js(s = 1, 2, . . . ,K2), we obtain K2

equations:

2φT
jsS

i
bφi −

K2∑
m=1

μmφ
T
jsS

i
tφ jm = 0, s = 1, · · · ,K2. (18)

Let Ui = [μ1, μ2, · · · , μK2]T , Di =
[
φ1, φ2, · · · , φK2

]T . The
above equations can be represented in the form of matrix:

DiS
i
tD

T
i Ui = 2DiS

i
bφi. (19)

Thus, we obtain:

Ui = 2(DiS
i
tD

T
i )−1DiS

i
bφi, (20)

Eq. (17) can be written as:

2S i
bφi − 2λS i

tφi − S i
tD

T
i Ui = 0. (21)

Substituting (20) into (21), we have:

2S i
bφi−2λS i

tφi−S i
tD

T
i [2(DiS

i
tD

T
i )−1DiS

i
bφi]=0. (22)

Hence, we obtain PiS i
bφi = λS i

tφi, that is, φi is the eigenvec-
tor corresponding to the nonzero eigenvalue of (S i

t)
−1PiS i

b,
where Pi is defined in Eq. (14). Proof is over.

Theorem 1 and Lemma 1 show that the realization of
SUNCD and UODV are different: (i) SUNCD constructs
specific total scatter matrix S i

t and between-class scatter ma-
trix S i

b for every class, while UODV uses identical total scat-
ter matrix S T and between-class scatter matrix S B for all
classes; (ii) The matrix Pi constructed by SUNCD is differ-
ent from the matrix P constructed by UODV.

4. Experimental Results

In the experiment, we use the public AR face database. This
database contains 119 individuals, each 26 images with size
60 × 60 [8]. All image samples of one subject are shown
in Fig. 1. The major differences between them are the ex-
pression, illumination, position, pose and sampling time. In
order to effectively evaluate the impact of different varia-
tions to the recognition results, we in turn choose following
1–10 representative images of every subject as the training
samples: (1), (14), (2), (5), (8), (11), (17), (19), (23) and
(25). And the remainders are chosen as the testing samples.

In the experiment, the value of K1 is selected such that
the best classification performance is obtained. On the AR
face database, K1 is set as 30. K2 is determined by using
the following strategy: set K2 as the number of most neigh-
boring classes of each class, where the optimal discriminant
vectors of these classes have been acquired; and if the num-
ber is more than 10, then set K2 = 10. Since the image
samples are high-dimensional, we first use the PCA trans-
form to reduce inputted feature dimension, and then apply
various methods to extracting discriminative features.

Figure 2 shows the recognition rates of SUNCD, NCD
and five related methods including LDA, UODV, CSLDA,
LPP and LFDA on the AR face database. SUNCD and NCD
perform better than other compared methods in all cases.
Furthermore, SUNCD outperforms NCD.

Table 1 shows the average recognition rates of all com-
pared methods. Compared with NCD, LDA, CSLDA, LPP

Fig. 1 Demo images of one subject from the AR database.
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Fig. 2 Recognition rates of all compared methods.

Table 1 Average recognition rates of compared methods.

Methods Average recognition rates(%)
SUNCD 83.369%
NCD 82.281%
LDA 78.620%
UODV 78.620%
CSLDA 77.079%
LPP 78.625%
LFDA 78.903%

and LFDA, SUNCD separately improves average recog-
nition rates by 1.088% (= 83.369% − 82.281%), 4.749%
(= 83.369% − 78.620%), 6.290% (= 83.369% − 77.079%),
4.744% (= 83.369%−78.625%), and 4.466% (= 83.369%−
78.903%). Here, UODV obtains the same recognition re-
sults as LDA on these two databases. The reason is that
if the nonzero Fisher discriminant values are mutually un-
equal, then UODV is equivalent to LDA. This has been
proved in Ref. [7].

5. Conclusions

In this letter, we propose an SUNCD approach for facial
feature extraction and recognition. SUNCD obtains a group
of optimal discriminant vectors, which can differentiate
one class and its near classes by virtue of constructing the

specific scatter matrices class by class. Moreover, SUNCD
makes the achieved discriminant vectors satisfy locally sta-
tistical uncorrelation, which is demonstrated to be a favor-
able theoretical property. Experimental results on the pub-
lic AR face database demonstrate that SUNCD outperforms
several representative discriminant methods including LDA,
UODV, CSLDA, LPP and LFDA, and improves the average
recognition rates at least by 4.466%.
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