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a b s t r a c t

Canonical correlation analysis (CCA) is a powerful statistical analysis technique, which

can extract canonical correlated features from two data sets. However, it cannot be

directly used for color images that are usually represented by three data sets, i.e., red,

green and blue components. Current multi-set CCA (mCCA) methods, on the other hand,

can only provide the iterative solutions, not the analytical solutions, when processing

multiple data sets. In this paper, we develop the CCA technique and propose a color

image CCA (CICCA) approach, which can extract canonical correlated features from

three color components and provide the analytical solution. We show the mathematical

model of CICCA, prove that CICCA can be cast as solving three eigen-equations, and

present the realization algorithm of CICCA. Experimental results on the AR and FRGC-2

public color face image databases demonstrate that CICCA outperforms several

representative color face recognition methods.

& 2011 Elsevier B.V. All rights reserved.
1. Introduction

The data of color images are two times more than
those of grayscale images and thus color images can
provide more useful information than grayscale images
yet may contain certain amount of redundant informa-
tion. Therefore, how to effectively exploit color informa-
tion to improve classification performance while reducing
redundancy emerges as an important task in color image
recognition. In literature some methods are dedicated to
tackle this issue. Yang and Liu [1,2] presented an
extended general color image discriminant (Extended
GCID) algorithm that produces three groups of weights
to fuse color components and then extracts discriminant
features from the fused components. Liu [3] presented the
ll rights reserved.
uncorrelated color space (UCS), the independent color
space (ICS), and the discriminating color space (DCS)
methods for face recognition. UCS applies the principal
component analysis (PCA) [4] to reduce the correlations
between color components. ICS assumes that each color
image is defined by three independent source images that
can be derived by a blind source separation procedure,
such as the independent component analysis (ICA) [5].
And DCS applies the discriminant analysis technique
[6–8] to define three new component images that are
effective for recognition. Yang et al. [9] transformed RGB
space to HSV color space, and then employed the Hue (H)
and Saturation (S) components to perform PCA transform.
Jones and Abbott [10] employed the hypercomplex form
to fuse the red, green and blue color components and then
extracted features. Yang et al. [11] presented two color
space normalization techniques. Current representative
color face recognition methods (including Extended GCID,
UCS, ICS, DCS, etc.) first transform the original RGB space
to new color spaces, and then employ commonly used
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linear discriminant analysis techniques to extract features
and do classification. These recognition methods reduce
the correlations between three color components in the
pixel level. In contrast, in this paper, we exploit color
information in another way, that is, we develop a novel
feature extraction technique and reduce correlations
among different color components in the feature level.

Canonical correlation analysis (CCA) is an effective
statistical analysis technique, which is first proposed by
Hotelling [12] as a way to measure the mutual relation-
ship between two multidimensional data sets. CCA seeks
the transformation vectors and represents a high-dimen-
sional relationship between two data sets with a few pairs
of canonical variables. It has been shown that the trans-
formation vectors of CCA can be obtained by solving the
eigen-problem, that is, the analytic solution of CCA can be
obtained [13]. The CCA technique has been widely studied
in several fields such as signal processing [14], computer
vision [15], and pattern recognition [16]. Since it can
extract image canonical correlated features, it has been
successfully applied to image recognition [17].

Multi-set canonical correlations analysis (mCCA) [18]
extends CCA technique and aims at analyzing the correla-
tions between more (than two) data sets. Li et al. [19]
pointed out in his work that mCCA cannot be solved as an
eigen-problem due to its multiple random vectors. There-
fore, current mCCA methods are solved in an iterative
way: Via et al. [20] proposed a neural network model and
the corresponding adaptive algorithm to realize mCCA for
signal processing; Li et al. [19]and Correa et al. [21]
presented the iterative solutions of mCCA for joint blind
source separation and brain imaging data fusion; Hasan
[22] proposed an mCCA dynamical systems which itera-
tively compute the multi-set canonical correlations and
canonical variates. The mCCA methods cannot be
employed for the image recognition task, due to its lack
of analytic solutions and large computational burden.
1.1. Motivation and contribution

In this paper, we attempt to analyze the canonical
correlations for color images and extract effective features
for recognition. However, traditional CCA cannot be applied
directly to this problem at hand, since it can only process
two data sets while we have three data sets (i.e., red, green
and blue components) to process. Current mCCA methods,
on the other hand, solve the problem in an iterative manner,
which may be computational expensive, and fail to provide
the analytical solutions. In this paper, we propose a color
image CCA (CICCA) approach for feature extraction and
recognition, which can provide the analytic solution and
extract effective features. We first describe the theoretical
foundations of CICCA and present an analytic solution to it.
We show that the proposed CICCA can be cast as solving
three eigen-equations. Next, we explain how to preprocess
the color components. And then we present the realization
algorithm of CICCA. Experimental results on the AR and
FRGC-2 public color face image databases demonstrate that
the proposed approach outperforms several representative
color face recognition methods.
1.2. Organization

The remainder of this paper is organized as follows. In
Section 2, we describe the theoretical foundation of the
proposed CICCA approach. In Section 3, we provide the
realization algorithm of CICCA. In Section 4, we show the
experiments on the AR and FRGC-2 public color face image
databases. Finally, conclusions are drawn in Section 5.

2. Theoretical foundation of color image canonical
correlation analysis (CICCA)

In this section, we describe the theoretical analysis of
the proposed CICCA approach and present the analytical
solution of CICCA.

Given N pairs of data (xi,yi,zi), i¼ 1, � � � ,N, xiARp, yiARq,
ziARs. We try to find three projection vectors jx, jy and
jz that can maximize the correlations between jT

x ðxi�xÞ,
jT

y ðyi�yÞ and jT
z ðzi�zÞ, respectively, thus we can acquire

the typically correlative features of three input data sets.
The correlations r1, r2, r3 are defined as

r1 ¼
jT

x XYTjyffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jT

x XXTjx

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jT

y YYTjy

q , ð1Þ

r2 ¼
jT

y YZTjzffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jT

y YYTjy

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jT

z ZZTjz

p , ð2Þ

r3 ¼
jT

z ZXTjxffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jT

z ZZTjz

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jT

x XXTjx

p ð3Þ

where X ¼ x1�x, � � � ,xN�x½ �, Y ¼ y1�y, � � � ,yN�y½ �, Z ¼ z1�z,½

� � � ,zN�z�, x, y and z are the mean vectors of X, Y and Z,
respectively. To get the maximum values of r1, r2, r3,
Eqs. (1), (2) and (3) are transformed to the following
optimization problem:

max jT
x XYTjyþjT

y YZTjzþjT
z ZXTjx,

s:t: jT
x XXTjx ¼ 1, jT

y YYTjy ¼ 1, jT
z ZZTjz ¼ 1: ð4Þ

Eq. (4) makes three input data sets typically correlated.
To find the analytic solution of Eq. (4), we give a theorem
and its proof as follows:

Theorem 1. The solution of Eq. (4) is equivalent to solving

the following three eigen-equations:

XYT ðYYT Þ
�1YZT ðZZT Þ

�1ZXTjx ¼ lXXTjx

YZT ðZZT Þ
�1ZXT ðXXT Þ

�1XYTjy ¼ lYYTjy

ZXT ðXXT Þ
�1XYT ðYYT Þ

�1YZTjz ¼ lZZTjz

8>><
>>:

ð5Þ

The proof is given in Appendix.

3. Realization algorithm of CICCA

This section explains how to apply CICCA to color
images for feature extraction and recognition.

3.1. Preprocessing of color components

Color images are usually expressed by three color
components, namely, red (R), green (G) and blue (B).
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In this paper, we use the preprocessed R, G and B color
components as three input data sets of CICCA. Three main
reasons for the preprocessing phrase are presented below.

First, we give the reason of preprocessing. The original
R, G and B color components are generally high dimen-
sional. If they are directly employed to CICCA, it is easy to
cause the singularity problem of matrices, which makes
the solutions of inverse matrices in Eq. (5) difficult. In
addition, these data have redundancy information that is
not helpful to feature extraction and recognition. Hence,
we need to reduce the dimensions of R, G and B color
components before using CICCA.

Second, we provide the preprocessing method. The
original R, G and B color components are greatly corre-
lated data sets. There are strong correlations among R, G
and B color components. If we deal with these compo-
nents by using the same dimensionality reduction
method, they will also be greatly correlated after dimen-
sionality reduction. Thus the features extracted by CICCA
are greatly correlated and many of these features are
redundant. This redundancy will reduce the classification
performance of extracted features.

Third, the CCA technique typically extracts the cano-
nically correlated features from two input data sets with
comparably large difference [12–17].

Consequently, in this paper, we preprocess R, G and B
color components using three different conventional dimen-
sion reduction (DM) methods, namely, PCA [4], LDA [6] and
MSDDA [25]. To show the effectiveness of CICCA, we test all
combinations of applying three DM methods to R, G and B
color components in the experiment, where one DM
method is only used for one color component.

3.2. Realization algorithm description

Let XR, XG and XB denote the data sets consisting of R, G
and B components, respectively. The CICCA approach can
be realized as follows:

Step 1. Preprocess XR, XG and XB by three methods
(including PCA, LDA and MSDDA), and obtain three
new data sets YR, YG and YB.
Step 2. Perform CICCA on YR, YG and YB, and calculate
three projection transforms VR, VG and VB using Eq. (5).
Fig. 1. Demo images of one individ
Step 3. Construct a new overall data set Z by

Z ¼ YT
R VR,YT

GVG,YT
B VB

� �T
: ð6Þ

Step 4. Use the nearest neighbor classifier with the
cosine distance to classify Z.
4. Experimental results

In this section, we compare the classification perfor-
mance of the proposed CICCA approach with several
representative color face recognition methods on AR and
FRGC-2 color face image databases. The AR color face
database [23] contains 102 individuals with each person
contributing 26 images. The FRGC-2 database [24] used in
the experiment contains 100 individuals, each 24 images.
We crop every image to the size of 60�60, and show
images of one subject from AR and FRGC-2 databases in
Figs. 1 and 2, respectively. The experiments are carried
out on a T7250 2.0GHz computer with a 2 GB RAM and
tested on the Matlab 7.8.0 platform.

In the experiments, we randomly select 6 sample
images per person for training, use the remainder for
testing and run all recognition methods for 30 times. In
order to prove the effectiveness of CICCA, we test all six
combinations of applying three preprocessing methods,
that is, PCA [4], LDA [6] and MSDDA [25], to R, G and B
color components, where one preprocessing method is
only used for one color component. For PCA, LDA, MSDDA
and CICCA methods, we employ the same classifier, i.e.,
the nearest neighbor classifier with cosine distance, to do
classification.

Figs. 3 and 4 show the recognition rates of all six
combinations of applying three preprocessing methods,
i.e., PCA, LDA and MSDDA to R, G and B color components
and the corresponding CICCA approach on the AR and
FRGC-2 databases, respectively. For example, Fig. 3 (a)
shows the recognition rates of PCA-R, LDA-G, MSDDA-B
and corresponding CICCA on the AR database, where PCA-
R denotes applying PCA to R component, LDA-G denotes
applying LDA to G component, MSDDA-B denotes apply-
ing MSDDA to B component; and three input data sets of
CICCA include R component preprocessed by PCA,
ual on AR database.



Fig. 2. Demo images of one individual on FRGC-2 database.

1 5 10 15 20 25 30
50

60

70

80

90

100

Random Testing No.

R
ec

og
ni

tio
n 

R
at

es
 (

%
)

PCA−R LDA−G MSDDA−B CICCA

1 5 10 15 20 25 30

50

60

70

80

90

100

Random Testing No.

R
ec

og
ni

tio
n 

R
at

es
 (

%
)

PCA−R LDA−B MSDDA−G CICCA

1 5 10 15 20 25 30

50

60

70

80

90

100

Random Testing No.

R
ec

og
ni

tio
n 

R
at

es
 (

%
)

PCA−G LDA−R MSDDA−B CICCA

1 5 10 15 20 25 30

50

60

70

80

90

100

Random Testing No.

R
ec

og
ni

tio
n 

R
at

es
 (

%
)

PCA−B LDA−R MSDDA−G CICCA

1 5 10 15 20 25 30

50

60

70

80

90

100

Random Testing No.

R
ec

og
ni

tio
n 

R
at

es
 (

%
)

PCA−G LDA−B MSDDA−R CICCA

1 5 10 15 20 25 30

50

60

70

80

90

100

Random Testing No.

R
ec

og
ni

tio
n 

R
at

es
 (

%
)

PCA−B LDA−G MSDDA−R CICCA

Fig. 3. Recognition rates of all six combinations of applying PCA, LDA and MSDDA to R, G and B color components, and rates of corresponding CICCA

approach on AR database.
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Fig. 4. Recognition rates of all six combinations of applying PCA, LDA and MSDDA to R, G and B color components, and rates of corresponding CICCA

approach on FRGC-2 database.
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G component preprocessed by LDA and B component
preprocessed by MSDDA.

Table 1 shows the classification performance of PCA,
LDA and MSDDA preprocessing R, G and B color compo-
nents on the AR and FRGC-2 databases. Meanwhile, we
list the classification results of CICCA. Figs. 3 and 4 show
the recognition results of different combinations, that is,
(i) PCA-R, LDA-G, MSDDA-B and the corresponding CICCA;
(ii) PCA-R, LDA-B, MSDDA-G and CICCA; (iii) PCA-G, LDA-
R, MSDDA-B and CICCA; (iv) PCA-G, LDA-B, MSDDA-R and
CICCA; (v) PCA-B, LDA-G, MSDDA-R and CICCA; (vi) PCA-B,
LDA-R, MSDDA-G and CICCA. These combinations lead to
slight variations (from 83.72% to 85.38% on the AR
database, from 86.88% to 88.32% on the FRGC database)
in the classification results of CICCA. In Table 1, we show
the lowest and highest results of CICCA among the results
of all six combinations.

By constructing two appropriate input data sets, the CCA
technique [19] might obtain preferable recognition effect.
Similarly, the proposed CICCA approach can select most
appropriate three input data sets (among six combinations
in Figs. 3 and 4) to enhance recognition effect. Hence, we
use the highest classification performance in Table 1 to
express the classification result of CICCA.

Figs. 5 and 6 show the recognition rates of the proposed
CICCA approach and several representative grayscale and
color face recognition methods including Extended GCID [1],
DCS [3], Gray-PCA, Gray-LDA, Gray-MSDDA, Color PCA
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(CPCA), Color LDA (CLDA) and Color MSDDA (CMSDDA) on
the AR and FRGC-2 databases, respectively. The CPCA,
CLDA and CMSDDA methods are the extensions of the
grayscale PCA [4], LDA [6] and MSDDA [25] methods. They
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Fig. 5. Recognition rates of CICCA and other represent

Table 1
Classification performance of PCA, LDA, MSDDA and CICCA on AR and

FRGC-2 color databases.

Method Mean and standard deviation of recognition rates (%)

AR FRGC-2

PCA-R 68.4376.08 63.6375.53

PCA-G 69.3277.36 59.8175.87

PCA-B 77.0377.52 58.0275.74

LDA-R 77.3476.45 82.5373.79

LDA-G 78.1676.51 83.9573.61

LDA-B 78.2677.50 83.9473.87

MSDDA-R 64.0375.47 63.5375.54

MSDDA-G 65.4777.02 59.6975.85

MSDDA-B 76.2277.71 58.0275.73

CICCA

Lowest 83.7276.98 86.8873.64

Highest 85.3876.30 88.3273.52
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Fig. 6. Recognition rates of CICCA and other representat
combine the red, green and blue component vectors of
each sample into a vector and then extract features.
According to Figs. 5 and 6, CICCA outperforms other face
recognition methods.

Table 2 shows the means and standard deviations of
recognition rates of CICCA and several representative
25 30

Gray−PCA
Gray−LDA
Gray−MSDDA
CPCA
CLDA
CMSDDA
Extended GCID
DCS
CICCA

ative face recognition methods on AR database.

25 30

Gray−PCA
Gray−LDA
Gray−MSDDA
CPCA
CLDA
CMSDDA
Extended GCID
DCS
CICCA

ive face recognition methods on FRGC-2 database.

Table 2
Classification performances of Color face recognition methods on AR and

FRGC-2 databases.

Method Mean and standard deviation of recognition rates (%)

AR FRGC-2

Gray-PCA 70.9077.06 60.8775.94

Gray-LDA 78.7876.64 83.3973.52

Gray-MSDDA 67.0277.12 60.7375.90

CPCA 73.0077.18 61.0375.85

CLDA 80.4576.04 84.4273.51

CMSDDA 68.7676.64 57.9575.86

Extended GCID 82.2876.08 85.6073.27

DCS 81.2476.05 85.0273.29

CICCA 85.3876.30 88.3273.52



Fig. 7. The FRR and FAR of CICCA on two face databases. (a) AR database and (b) FRGC-2 database.

Fig. 8. ROC curves of CICCA and compared methods on two databases. (a) AR database and (b) FRGC-2 database.
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grayscale and color face recognition methods on the AR and
FRGC-2 color face image databases. Compared with other
methods, the proposed CICCA approach improves the average
recognition rates at least by 3.1% (=85.38%�82.28%) and
2.72% (=88.32%�85.60%) on the AR and FRGC-2 data-
bases, respectively.



Table 3
Time complexity and average computing time (s) of CICCA and com-

pared methods.

Method Time complexity Average computing time (s)

CICCA O(N3) 20.89

Extended GCID O(kN3) 35.77

DCS O(N3) 35.46

Color PCA O(N3) 19.81

Color LDA O(N3) 18.74

Color MSDDA O(N3) 19.38

N is the total number of training samples and k is the number of

iterations of Extended GCID.

X. Jing et al. / Signal Processing 91 (2011) 2132–2140 2139
To further analyze the performance of the proposed
approach, we evaluate the false reject rate (FRR) and false
accept rate (FAR) of CICCA, and show the results on two
databases in Fig. 7.

The ROC curves of CICCA and compared methods are
given in Fig. 8. It can be seen that CICCA attains compara-
tively low equal error rate (EER), and thus is an effective
face recognition approach.

In addition, Table 3 shows the time complexity and
average computing time of CICCA and other color face
recognition methods. Table 3 shows that, compared with
Extended GCID and DCS, the proposed CICCA approach
consumes less time.

5. Conclusions

In this paper, we develop the canonical correlation
analysis (CCA) technique and propose a color image
canonical correlation analysis (CICCA) approach for fea-
ture extraction and recognition. We derive the analytical
solution of CICCA and present its realization algorithm.
Experiments on AR and FRGC-2 color face databases show
that, CICCA achieves better recognition results than
several representative color face recognition methods,
which improves the average recognition rates by at least
3.1% and 2.72% in contrast with compared methods on AR
and FRGC-2 databases, respectively. Accordingly, the
proposed CICCA approach is well-suited for color face
recognition.
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Appendix

The proof of Theorem 1
Proof. By using the Lagrange multipliers, Eq. (4) can be
reformulated as:

L¼jT
x XYTjyþj

T
y YZTjzþj

T
z ZXTjxþlxð1�jT

x XXTjxÞ

þlyð1�jT
y YYTjyÞþlzð1�jT

z ZZTjzÞ, ð7Þ

where lx, ly and lz are the Lagrange multipliers.
Separately set the partial derivative @ðLÞ=@ðjxÞ,

@ðLÞ=@ðjyÞ and @ðLÞ=@ðjzÞ to zero, we get:

XYTjyþXZTjz�2lxXXTjx ¼ 0, ð8Þ

YXTjxþYZTjz�2lyYYTjy ¼ 0, ð9Þ

ZYTjyþZXTjx�2lzZZTjz ¼ 0: ð10Þ

Separately left multiplying both sides of Eqs. (8)–(10)
by jT

x , jT
y and jT

z , we have

jT
x XYTjyþj

T
x XZTjz ¼ 2lx, ð11Þ

jT
y YXTjxþj

T
y YZTjz ¼ 2ly, ð12Þ

jT
z ZYTjyþj

T
z ZXTjx ¼ 2lz: ð13Þ

Separately substituting Eqs. (11)–(13) into Eq. (7), we
have

L1 ¼jT
y YZTjzþ2lxþlxð1�jT

x XXTjxÞ

þlyð1�jT
y YYTjyÞþlzð1�jT

z ZZTjzÞ, ð14Þ

L2 ¼jT
z ZXTjxþ2lyþlxð1�jT

x XXTjxÞ

þlyð1�jT
y YYTjyÞþlzð1�jT

z ZZTjzÞ, ð15Þ

L3 ¼jT
x XYTjyþ2lzþlxð1�jT

x XXTjxÞ

þlyð1�jT
y YYTjyÞþlzð1�jT

z ZZTjzÞ: ð16Þ

We set @ðL1Þ=@ðjyÞ, @ðL2Þ=@ðjzÞ and @ðL3Þ=@ðjxÞ to zero,
and obtain

YZTjz�2lyYYTjy ¼ 0, ð17Þ

ZXTjx�2lzZZTjz ¼ 0, ð18Þ

XYTjy�2lxXXTjx ¼ 0: ð19Þ

Eq. (18) can be rewritten as

jz ¼
1

2lz
ðZZT Þ

�1ZXTjx: ð20Þ

Substituting Eq. (20) into Eq. (17), we have

jy ¼
1

4lylz
YYT YZT ðZZT Þ

�1ZXTjx: ð21Þ

Substituting Eq. (21) into Eq. (19), we have

XYT ðYYT Þ
�1YZT ðZZT Þ

�1ZXTjx ¼ 8lxlylzXXTjx, ð22Þ

In this manner, we can also get

YZT ðZZT Þ
�1ZXT ðXXT Þ

�1XYTjy ¼ 8lxlylzYYTjy, ð23Þ

ZXT ðXXT Þ
�1XYT ðYYT Þ

�1YZTjz ¼ 8lxlylzZZTjz: ð24Þ
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Set l=8lxlylz, and then we have

XYT ðYYT Þ
�1YZT ðZZT Þ

�1ZXTjx ¼ lXXTjx, ð25Þ

YZT ðZZT Þ
�1ZXT ðXXT Þ

�1XYTjy ¼ lYYTjy, ð26Þ

ZXT ðXXT Þ
�1XYT ðYYT Þ

�1YZTjz ¼ lZZTjz: & ð27Þ
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